PROBOND 1100PS (Part A) FORSPEC PROTECTIVE COATINGS

Chemwatch: 5689-04 Version No: 2.1

Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **02/07/2024** Print Date: **20/01/2025** L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier Product name PROBOND 1100PS (Part A) Chemical Name Not Applicable Synonyms FX-1100(PartA) Proper shipping name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A/ diglycidyl ether resin, liquid) Chemical formula Not Applicable Other means of identification Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Resin component. Waterproofing clear coating.

Use according to manufacturer's directions.

Details of the manufacturer or supplier of the safety data sheet

Registered company name	FORSPEC PROTECTIVE COATINGS
Address	22/872 Canterbury Rd. Roselands NSW 2196 Australia
Telephone	+61 2 8021 3517
Fax	Not Available
Website	www.forspec.com.au
Email	info@forspec.com.au

Emergency telephone number

• • •		
Association / Organisation	FORSPEC PROTECTIVE COATINGS	
Emergency telephone number(s)	0424 424178 (Mon-Fri 7.30am to 5pm; Sat 8.30am to 12.30pm)	
Other emergency telephone number(s)	Not Available	

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Chemwatch Hazard Ratings Min Max 1 Flammability 1 Toxicity 0 = Minimum 3 **Body Contact** 1 = Low 2 = Moderate Reactivity 3 = High Chronic 4 = Extreme

Poisons Schedule	S5
Classification [1]	Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Germ Cell Mutagenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 2, Hazardous to the Aquatic Environment Long-Term Hazard Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

Chemwatch: 5689-04

PROBOND 1100PS (Part A)

Page 2 of 14 Issue Date: 02/07/2024 Print Date: 20/01/2025

H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H318	Causes serious eye damage.
H335	May cause respiratory irritation.
H341	Suspected of causing genetic defects.
H373	May cause damage to organs through prolonged or repeated exposure.
H411	Toxic to aquatic life with long lasting effects.
AUH019	May form explosive peroxides.

Precautionary statement(s) Prevention

Version No: 2.1

P201	Obtain special instructions before use.
P260	Do not breathe mist/vapours/spray.
P271	Use only a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P273	Avoid release to the environment.
P264	Wash all exposed external body areas thoroughly after handling.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308+P313	IF exposed or concerned: Get medical advice/ attention.
P310	Immediately call a POISON CENTER/doctor/physician/first aider.
P302+P352	IF ON SKIN: Wash with plenty of water and soap.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P391	Collect spillage.
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
25068-38-6	<70	bisphenol A/ diglycidyl ether resin, liquid
65997-15-1	20-<30	portland cement
112945-52-5	<5	silica amorphous, fumed, crystalline free
Legend:	1. Classified by Chemwatch; 2. Cla Classification drawn from C&L * E	assification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4.

SECTION 4 First aid measures

Description of first aid measures		
Eye Contact	If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.	
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. 	
Ingestion	► If swallowed do NOT induce vomiting.	

Issue Date: 02/07/2024 Chemwatch: 5689-04 Page 3 of 14

Version No: 2.1 Print Date: 20/01/2025 PROBOND 1100PS (Part A)

- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- Foam.
 Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Special hazards arising from the substrate or mixture	
Fire Incompatibility	▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 ▶ Combustible. ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) silicon dioxide (SiO2) metal oxides other pyrolysis products typical of burning organic material.

SECTION 6 Accidental release measures

HAZCHEM

Personal precautions, protective equipment and emergency procedures

•3Z

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up		
Minor Spills	 In the event of a spill of a reactive diluent, the focus is on containing the spill to prevent contamination of soil and surface or ground water. If irritating vapors are present, an approved air-purifying respirator with organic vapor canister is recommended for cleaning up spills and leaks. For small spills, reactive diluents should be absorbed with sand. Environmental hazard - contain spillage. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water. 	
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services. Environmental hazard - contain spillage. Industrial spills or releases of reactive diluents are infrequent and generally contained. If a large spill does occur, the material should be captured, collected, and reprocessed or disposed of according to applicable governmental requirements. An approved air-purifying respirator with organic-vapor canister is recommended for emergency work. 	

Chemwatch: **5689-04** Page **4** of **14** Issue Date: **02/07/2024**Version No: **2.1** Print Date: **20/01/2025**

PROBOND 1100PS (Part A)

SECTION 7 Handling and storage

Precautions for safe handling ▶ Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. ▶ DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. Safe handling When handling, DO NOT eat, drink or smoke Keep containers securely sealed when not in use Avoid physical damage to containers. Always wash hands with soap and water after handling. ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. ${\color{red} \blacktriangleright} \ \ \text{Observe manufacturer's storage and handling recommendations contained within this SDS}.$ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Store in original containers. Keep containers securely sealed Store in a cool, dry, well-ventilated area. Other information Store away from incompatible materials and foodstuff containers.

Protect containers against physical damage and check regularly for leaks

▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	Plastic tubes. Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
	In general, uncured epoxy resins have only poor mechanical, chemical and heat resistance properties. However, good properties are obtained by reacting the linear epoxy resin with suitable curatives to form three-dimensional cross-linked thermoset structures. This process is commonly referred to as curing or gelation process. Curing of epoxy resins is an exothermic reaction and in some cases produces sufficient heat to cause thermal degradation if not controlled.
	Curing may be achieved by reacting an epoxy with itself (homopolymerisation) or by forming a copolymer with polyfunctional curatives or hardeners. In principle, any molecule containing a reactive hydrogen may react with the epoxide groups of the epoxy resins. Common classes of hardeners for epoxy resins include amines, acids, acid anhydrides, phenols, alcohols and thiols. Relative reactivity (lowest first) is approximately in the order: phenol < anhydride < aromatic amine < cycloaliphatic amine < aliphatic amine < thiol.
	The epoxy curing reaction may be accelerated by addition of small quantities of accelerators. Tertiary amines, carboxylic acids and alcohols (especially phenols) are effective accelerators. Bisphenol A is a highly effective and widely used accelerator, but is now increasingly replaced due to health concerns with this substance.
	Epoxy resin may be reacted with itself in the presence of an anionic catalyst (a Lewis base such as tertiary amines or imidazoles) or a cationic catalyst (a Lewis acid such as a boron trifluoride complex) to form a cured network. This process is known as catalytic homopolymerisation. The resulting network contains only ether bridges, and exhibits high thermal and chemical resistance, but is brittle and
Storage incompatibility	often requires elevated temperature to effect curing, so finds only niche applications industrially. Epoxy homopolymerisation is often used when there is a requirement for UV curing, since cationic UV catalysts may be employed (e.g. for UV coatings). • Avoid strong acids, bases.
	Reactive diluents are stable under recommended storage conditions, but can decompose at elevated temperatures. In some cases, decomposition can cause pressure build-up in closed systems.

Glycidyl ethers:

In the standard of the stand

- maintained at adequate levels
- may polymerise in contact with heat, organic and inorganic free radical producing initiators
- ▶ may polymerise with evolution of heat in contact with oxidisers, strong acids, bases and amines
- react violently with strong oxidisers, permanganates, peroxides, acyl halides, alkalis, ammonium persulfate, bromine dioxide
- attack some forms of plastics, coatings, and rubber
- Avoid cross contamination between the two liquid parts of product (kit).
 If two part products are mixed as allowed to mix in proportions other the
- If two part products are mixed or allowed to mix in proportions other than manufacturer's recommendation, polymerisation with gelation and evolution of heat (exotherm) may occur.
- ► This excess heat may generate toxic vapour
- Avoid reaction with amines, mercaptans, strong acids and oxidising agents

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peal	k	Notes
Australia Exposure Standards	portland cement	Portland cement	10 mg/m3	Not Available	Not Avail	lable	(a) This value is for inhalable dust containing no asbestos and < 1% crystalline silica.
Ingredient	Original IDLH				Revise	d IDLH	

Ingredient	Original IDLH	Revised IDLH
bisphenol A/ diglycidyl ether resin, liquid	Not Available	Not Available
portland cement	5,000 mg/m3	Not Available
silica amorphous, fumed, crystalline free	Not Available	Not Available

Occupational Exposure Banding

Chemwatch: 5689-04 Page 5 of 14 Version No: 2.1

PROBOND 1100PS (Part A)

Issue Date: 02/07/2024 Print Date: 20/01/2025

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
bisphenol A/ diglycidyl ether resin, liquid	D	> 0.1 to ≤ 1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.	

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant

Appropriate engineering controls

Air Speed: Type of Contaminant: 0.25-0.5 m/s (50solvent, vapours, degreasing etc., evaporating from tank (in still air). 100 f/min.) aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, 0.5-1 m/s (100spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) 200 f/min.) direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active 1-2.5 m/s (200generation into zone of rapid air motion) 500 f/min.) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone 2.5-10 m/s (500of very high rapid air motion). 2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Individual protection measures, such as personal protective equipment

Eye and face protection

- Safety glasses with side shields
- ► Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent]
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 591

Skin protection

See Hand protection below

Hands/feet protection

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. When handling liquid-grade epoxy resins wear chemically protective gloves, boots and aprons.

The performance, based on breakthrough times ,of:

- Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent
- Butyl Rubber ranges from excellent to good
- Nitrile Butvl Rubber (NBR) from excellent to fair.
- Neoprene from excellent to fair
- Polyvinyl (PVC) from excellent to poor

As defined in ASTM F-739-96

- · Excellent breakthrough time > 480 min
- Good breakthrough time > 20 min
- · Fair breakthrough time < 20 min Poor glove material degradation

Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively)

- DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin).
- DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use

Chemwatch: **5689-04** Page **6** of **14** Issue Date: **02/07/2024**Version No: **2.1** Print Date: **20/01/2025**

PROBOND 1100PS (Part A)

	Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower chemical resistance but which is replaced frequently than to select a more resistant glove which is reused many times
Body protection	See Other protection below
Other protection	 Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance	White putty with low odour; does not mix with water.Low odour		
Physical state	Non Slump Paste	Relative density (Water = 1)	Not Available
Odour	Low Odour	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Heat of Combustion (kJ/g)	Not Available	Ignition Distance (cm)	Not Available
Flame Height (cm)	Not Available	Flame Duration (s)	Not Available
Enclosed Space Ignition Time Equivalent (s/m3)	Not Available	Enclosed Space Ignition Deflagration Density (g/m3)	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Chemwatch: 5689-04 Page 7 of 14 Version No: 2.1

PROBOND 1100PS (Part A)

Issue Date: 02/07/2024 Print Date: 20/01/2025

Information on toxicological effects Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhaled Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. In animal testing, exposure to aerosols of some reactive diluents (notably o-cresol glycidyl ether, CAS RN: 2210-79-9) has been reported to affect the adrenal gland, central nervous system, kidney, liver, ovaries, spleen, testes, thymus, and respiratory tract. Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function. Accidental ingestion of the material may be damaging to the health of the individual. Reactive diluents exhibit a range of ingestion hazards. Small amounts swallowed incidental to normal handling operations are not likely to cause injury. However, swallowing larger amounts may cause injury. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head Ingestion count, sperm motility, and sperm abnormality in the BADGE treatment groups High molecular weight material; on single acute exposure would be expected to pass through gastrointestinal tract with little change /

producing discomfort. Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of

individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis

absorption. Occasionally accumulation of the solid material within the alimentary tract may result in formation of a bezoar (concretion),

The material may accentuate any pre-existing dermatitis condition

Bisphenol A diglycidyl ether (BADGE) may produce contact dermatitis characterised by erythema and oedema, with weeping followed by crusting and scaling. A liquid resin with a molecular weight of 350 produced severe skin irritation in rabbits when applied daily for 4 hours over 20 days.

Following the initial contact there may be a discrete erythematous lesion, confined to the point of contact, which may persist for 48 hours to 10 days; the erythema may give way to a papular, vesicular rash with scaling.

In animals uncured resin produces moderate ante-mortem depression, loss of body weight and diarrhoea. Local irritation, inflammation and death resulting from respiratory system depression are recorded. Higher molecular weight resins generally produce lower toxicity. experimental results show that the bisphenols BPG, BPAF, BPC, BADGE, BPB, and BPBP can affect Ca2+ signaling in human sperm cells through activation of CatSper. This could potentially disrupt human sperm function by interfering with normal CatSperbackground

Skin Contact

Although evidence suggests that BPA and its analogs can interfere with human male fertility, the effects directly on human sperm function are less well-studied.Ca2+ signaling is a key regulator of human sperm function (9). The CatSper Ca2+ channel is the principal Ca2+ channel in human sperm (10, 11) and is activated by the female sex steroid progesterone, released in high amounts from the cumulus cells surrounding the oocyte (10, 12). The activation of CatSper by progesterone controls important sperm functions (13). A suboptimal progesterone-induced Ca2+ influx is associated with reduced male fertility and men who lack functional CatSper are sterile (18, 21–29), illustrating the importance of CatSper and Ca2+ signaling for normal male fertility. Studies have shown that human CatSper can be promiscuously activated by various signaling molecules (30), steroids , small molecules (33), and environmental chemicals . As only BPA, and none of its structural analogs, has previously been investigated for effects on Ca2+ signaling in human sperm cells (34, 40), we set out to screen BADGE, BPA, and its eight structural analogs BPG, BPAF, BPC, BPB, BPBP, BPE, BPF, BPS for effects on Ca2+ signaling, and CatSper in human sperm, as well as on human sperm cell function. Citation:

Rehfeld, A., Andersson, A. M., & Skakkebæk, N. E. (2020). Bisphenol A Diglycidyl Ether (BADGE) and Bisphenol Analogs, but Not Bisphenol A (BPA), Activate the CatSper Ca2+ Channel in Human Sperm. Frontiers in Endocrinology, 11, 540602. https://doi.org/10.3389/fendo.2020.00324

Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related.

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Skin contact with reactive diluents may cause slight to moderate irritation with local redness. Repeated or prolonged skin contact may cause burns.

Eye

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation

Eye contact with reactive diluents may cause slight to severe irritation with the possibility of chemical burns or moderate to severe corneal iniury.

Chronic

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance Harmful: danger of serious damage to health by prolonged exposure through inhalation.

Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year)

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but Chemwatch: **5689-04** Page **8** of **14** Issue Date: **02/07/2024**Version No: **2.1** Print Date: **20/01/2025**

PROBOND 1100PS (Part A)

which are not a secondary non-specific consequence of other toxic effects.

Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry.

Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

À 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties. Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that "it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades."

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which "...merits concern among scientists and public health officials"

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, "these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls". Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells (whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called "cytostatic hormones". Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon. All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells. Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity..

Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in vivo or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in cultured animal cells. Allyl glycidyl ether induced mutation in Drosophila. The glycidyl ethers were generally mutagenic to hacteria

The material contains a substantial proportion of a polymer considered to be of low concern (PLC). The trend towards production of lower molecular weight polymers (thus reducing the required level of solvent use and creating a more "environmentally-friendly" material) has brought with it the need to define PLCs as those

having molecular weights of between 1000 and 10000 and containing less than 10% of the molecules with molecular weight below 500 and less than 25% of the molecules with a molecular weight below 1000. These may contain unlimited low concern functional groups or moderate concern reactive functional groups with a combined functional group equivalent weight (FGEW, a concept developed by the US EPA describing whether the reactive functional group is sufficiently diluted by polymeric material) of a 1000 or more (provided no high concern groups are present) or high concern reactive functional groups with a FGEW of 5000 or more (FGEW includes moderate concern groups if present).

having molecular weights exceeding 10000 (without restriction on reactive groups).

inhalation of polymers with molecular weights > 70,000 Da has been linked with irreversible lung damage due to lung overloading and impaired clearance of particles from the lung, particularly following repeated exposure. If the polymer is inhaled at low levels and/or infrequently, it is assumed that it will be cleared from the lungs.

Reactive functional groups are in turn classified as being of low, moderate or high concern Classification of the polymer as a PLC, in accordance with established criteria, does not mean that hazards will not be associated with the polymer (during its import, manufacture, use, storage, handling or disposal). The polymer may, for example, contain a large number of particles in the respirable range, a hazard which may need to assessed in the health and safety risk assessment. Similarly a polymer with low concern reactive may be released into the environment in large quantities and produce an environmental hazard.

Whilst it is generally accepted that polymers with a molecular weight exceeding 1000 are unlikely to pass through biological membranes, oligomers with lower molecular weight and specifically, those with a molecular weight below 500, may. Estimations based on a "highly" dispersed polymer population (polydispersity = 10) suggests that the molecular weight of the polymer carrying a reactive group of high

Chemwatch: 5689-04 Page 9 of 14 Version No: 2.1

PROBOND 1100PS (Part A)

Issue Date: 02/07/2024 Print Date: 20/01/2025

concern must be 5000 to be considered a PLC; similarly a polymer of approximate molecular weight 1000 could contain no more than one reactive group of moderate concern (for two moderate concern groups, the molecular weight would be about 2500).

Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite) In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low. Four grades of wollastonite of different fibre size were tested for carcinogenicity in one experiment in rats by intrapleural implantation. There was no information on the purity of the four samples used. A slight increase in the incidence of pleural sarcomas was observed with three grades, all of which contained fibres greater than 4 um in length and less than 0.5 um in diameter

In two studies by intraperitoneal injection in rats using wollastonite with median fibre lengths of 8.1 um and 5.6 um respectively, no intraabdominal tumours were found.

Evidence from wollastonite miners suggests that occupational exposure can cause impaired respiratory function and pneumoconiosis However animal studies have demonstrated that wollastonite fibres have low biopersistence and induce a transient inflammatory response compared to various forms of asbestos. A two-year inhalation study in rats at one dose showed no significant inflammation or fibrosis Bisphenol A diglycidyl ethers (BADGEs) produce sensitisation dermatitis characterised by a papular, vesicular eczema with considerable itching of the back of the hand, the forearm and face and neck. This lesion may persist for 10-14 days after withdrawal from exposure and recur immediately on re-exposure. This dermatitis may persist for longer periods following each exposure but is unlikely to become more intense. Lesions may develop a brownish colour and scaling occurs frequently. Lower molecular weight species produce sensitisation more readily.

In mice technical grades of bisphenol A diglycidyl ether produced epidermal tumours and a small increase in the incidence kidney tumours in males and of lymphoreticular/ haematopoietic tumours in females. Subcutaneous injection produced a small number of fibrosarcomas in rats

BADGE is listed as an IARC Group 3 carcinogen, meaning it is "not classifiable as to its carcinogenicity to humans". Concern has been raised over this possible carcinogenicity because BADGE is used in epoxy resins in the lining of some tin cans for foodstuffs, and unreacted BADGE may end up in the contents of those cans

For some reactive diluents, prolonged or repeated skin contact may result in absorption of potentially harmful amounts or allergic skin reactions

Exposure to some reactive diluents (notably neopentylglycol diglycidyl ether, CAS RN:17557-23-2) has caused cancer in some animal

Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis.

Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO].

Repeated, prolonged severe inhalation exposure may cause pulmonary oedema and rarely, pulmonary fibrosis. Workers may also suffer from dust-induced bronchitis with chronic bronchitis reported in 17% of a group occupationally exposed to high dust levels Respiratory symptoms and ventilatory function were studied in a group of 591 male Portland cement workers employed in four Taiwanese cement plants, with at least 5 years of exposure (1). This group had a significantly lowered mean forced vital capacity (FCV), forced expiratory volume at 1 s (FEV1) and forced expiratory flows after exhalation of 50% and 75% of the vital capacity (FEF50, FEF75). The data suggests that occupational exposure to Portland cement dust may lead to a higher incidence of chronic respiratory symptoms and a reduction of ventilatory capacity.

Chun-Yuh et al; Journal of Toxicology and Environmental Health 49: 581-588, 1996

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following

TOXICITY		IRRITATION	
PROBOND 1100PS (Part A)	Not Available	Not Available	
	TOXICITY	IRRITATION	
	dermal (rat) LD50: >1200 mg/kg ^[2]	Eye (Rodent - rabbit): 100mg - Mild	
	Oral (Mouse) LD50; >500 mg/kg ^[2]	Eye (Rodent - rabbit): 100mg - Mild	
1.5. 1 1.47 P. 1 1.1 4		Eye (Rodent - rabbit): 100mg - Mild	
bisphenol A/ diglycidyl ether resin, liquid		Eye (Rodent - rabbit): 20mg/24H - Moderate	
, ,		Eye (Rodent - rabbit): 5mg/24H - Severe	
		Skin (Rodent - guinea pig): 2750mg/55D (intermittent)	
		Skin (Rodent - rabbit): 2mg/24H - Severe	
		Skin (Rodent - rabbit): 500uL/24H - Moderate	
	TOXICITY	IRRITATION	
portland cement	Not Available	Not Available	
	TOXICITY	IRRITATION	
silica amorphous, fumed, crystalline free	Dermal (rabbit) LD50: >5000 mg/kg ^[2]	Not Available	
orystamine free	Oral (Rat) LD50: 3160 mg/kg ^[2]		
Legend:	Value obtained from Europe ECHA Registered Substa	ances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwi	

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID

Foetoxicity has been observed in animal studies Oral (rabbit, female) NOEL 180 mg/kg (teratogenicity; NOEL (maternal 60 mg/kg The chemical structure of hydroxylated diphenylalkanes or bisphenois consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such

Chemwatch: **5689-04** Page **10** of **14** Issue Date: **02/07/2024**Version No: **2.1** Print Date: **20/01/2025**

PROBOND 1100PS (Part A)

activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor.

In vitro cell models were used to evaluate the ability of 22 bisphenols (BPs) to induce or inhibit estrogenic and androgenic activity. BPA,

In vitro cell models were used to evaluate the ability of 22 bisphenols (BPs) to induce or inhibit estrogenic and androgenic activity. BPA, Bisphenol AF (BPAF), bisphenol Z (BPZ), bisphenol C (BPC), tetramethyl bisphenol A (TMBPA), bisphenol S (BPS), bisphenol E (BPE), 4,4-bisphenol F (4,4-BPF), bisphenol AP (BPAP), bisphenol B (BPB), tetrachlorobisphenol A (TCBPA), and benzylparaben (PHBB) induced estrogen receptor (ER)alpha and/or ERbeta-mediated activity. With the exception of BPS, TCBPA, and PHBB, these same BPs were also androgen receptor (AR) antagonists. Only 3 BPs were found to be ER antagonists. Bisphenol P (BPP) selectively inhibited ERbeta-mediated activity and 4-(4-phenylmethoxyphenyl)sulfonylphenol (BPS-MPE) and 2,4-bisphenol S (2,4-BPS) selectively inhibited ERalpha-mediated activity. None of the BPs induced AR-mediated activity.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for ~13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg).

Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg.

Carcinogenicity: IARC concluded that "there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals." Its overall evaluation was "Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3). In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however, produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3TBL/6 mice (Holland et al., 1979; cited by Canter et al., 1986). In a two-year bioassay, female Fisher 344 rats dermally exposed to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EPA, 1997).

Genotoxicity: In S. typhimurium strains TA100 and TA1535, BADGE (10-10,000 ug/plate) was mutagenic with and without S9; negative results were obtained in TA98 and TA1537 (Canter et al., 1986; Pullin, 1977). In a spot test, BADGE (0.05 or 10.00 mg) failed to show mutagenicity in strains TA98 and TA100 (Wade et al., 1979). Negative results were also obtained in the body fluid test using urine of female BDF and ICR mice (1000 mg/kg BADGE), the mouse host-mediated assay (1000 mg/kg), micronucleus test (1000 mg/kg), and dominant lethal assay (~3000 mg/kg).

Immunotoxicity: Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs

Consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worst-case scenario that assumes BADGE migrates at the same level into all types of food, the estimated per capita daily intake for a 60-kg individual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction studies and developmental investigations found no evidence of reproductive or endocrine toxicity, the upper ranges of dosing being determined by maternal toxicity. The lack of endocrine toxicity in the reproductive and developmental toxicological tests is supported by negative results from both in vivo and in vitro assays designed specifically to detect oestrogenic and androgenic properties of BADGE. An examination of data from sub-chronic and chronic toxicological studies support a NOAEL of 50 mg/ kg/body weight day from the 90-day study, and a NOAEL of 15 mg/kg body weigh/day (male rats) from the 2-year carcinogenicity study. Both NOAELS are considered appropriate for risk assessment. Comparing the estimated daily human intake of 0.16 ug/kg body weight/day with the NOAELS of 50 and 15 mg/kg body weight/day shows human exposure to BADGE from can coatings is between 250,000 and 100,000-fold lower than the NOAELs from the most sensitive toxicology tests. These large margins of safety together with lack of reproductive, developmental, endocrine and carcinogenic effects supports the continued use of BADGE for use in articles intended to come into contact with foodstuffs.

PORTLAND CEMENT

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

No significant acute toxicological data identified in literature search.

SILICA AMORPHOUS, FUMED. CRYSTALLINE FREE

For silica amorphous:

Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d.

In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin.

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.

Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact.

Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content),

all of which subsided after exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle

size decreases so does the NOAEL/LOAEL.

Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected.

For Synthetic Amorphous Silica (SAS)

Chemwatch: 5689-04 Page 11 of 14 Issue Date: 02/07/2024 Version No: 2.1

Print Date: 20/01/2025 PROBOND 1100PS (Part A)

Repeated dose toxicity

Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet.

Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) =1.3 mg/m3 based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity.

For silane treated synthetic amorphous silica:

Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested.

There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS.

BISPHENOL A/ DIGLYCIDYL ETHER RESIN, LIQUID & PORTLAND CEMENT

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons

Acute Toxicity	×	Carcinogenicity	x
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	~	STOT - Single Exposure	*
Respiratory or Skin sensitisation	~	STOT - Repeated Exposure	~
Mutagenicity	✓	Aspiration Hazard	X

Legend:

- Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
PROBOND 1100PS (Part A)	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
bisphenol A/ diglycidyl ether resin, liquid	EC50(ECx)	48h	Crustacea	~2mg/l	2
reom, nquiu	EC50	48h	Crustacea	~2mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
portland cement	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
silica amorphous, fumed, crystalline free	Not Available	Not Available	Not Available	Not Available	Not Available
Legend:	Ecotox databa		CHA Registered Substances - Ecotoxicologica Aquatic Hazard Assessment Data 6. NITE (J		

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
bisphenol A/ diglycidyl ether resin, liquid	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation
bisphenol A/ diglycidyl ether resin, liquid	LOW (LogKOW = 2.6835)

Mobility in soil

Ingredient	Mobility	
bisphenol A/ diglycidyl ether resin, liquid	LOW (Log KOC = 51.43)	

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible

Otherwise:

If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

Page 12 of 14

Chemwatch: 5689-04 Version No: 2.1

PROBOND 1100PS (Part A)

Issue Date: 02/07/2024 Print Date: 20/01/2025

▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Waste Management

Production waste from epoxy resins and resin systems should be treated as hazardous waste in accordance with National regulations. Fire retarded resins containing halogenated compounds should also be treated as special waste. Accidental spillage of resins, curing agents and their formulations should be contained and absorbed by special mineral absorbents to prevent them from entering the environment. Contaminated or surplus product should not be washed down the sink, but preferably be fully reacted to form cross-linked solids which is non-hazardous and can be more easily disposed.

Finished articles made from fully cured epoxy resins are hard, infusible solids presenting no hazard to the environment. However, finished articles from flame-retarded material containing halogenated resins should be considered hazardous waste, and disposed as required by National laws. Articles made from epoxy resins, like other thermosets, can be recycled by grinding and used as fillers in other products. Another way of disposal and recovery is combustion with energy recovery.

Removal of bisphenol A (BPA) from aqueous solutions was accomplished by adsorption of enzymatically generated quinone derivatives on chitosan beads. The use of chitosan in the form of beads was found to be more effective because heterogeneous removal of BPA with chitosan beads was much faster than homogeneous removal of BPA with chitosan solutions, and the removal efficiency was enhanced by increasing the amount of chitosan beads dispersed in the BPA solutions and BPA was completely removed by quinone adsorption in the presence of chitosan beads more than 0.10 cm3/cm3. In addition, a variety of bisphenol derivatives were completely or effectively removed by the procedure constructed in this study, although the enzyme dose or the amount of chitosan beads was further increased as necessary for some of the bisphenol derivatives used

M. Suzuki, and E Musashi J Appl Polym Sci, 118(2):721 - 732; October 2010

- **DO NOT** allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- ▶ Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM •3Z

Land transport (ADG)

14.1. UN number or ID number	3082			
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A/ diglycidyl ether resin, liquid)			
14.3. Transport hazard class(es)	Class Subsidiary Hazard			
14.4. Packing group	III			
14.5. Environmental hazard	Environmentally hazardous			
14.6. Special precautions for user	Special provisions Limited quantity	274 331 335 375 AU01 5 L		

Environmentally Hazardous Substances meeting the descriptions of UN 3077 or UN 3082 are not subject to this Code when transported by road or rail in;

(a) packagings;

(b) IBCs; or

(c) any other receptacle not exceeding 500 kg(L).

- Australian Special Provisions (SP AU01) - ADG Code 7th Ed.

Air transport (ICAO-IATA / DGR)

	-7				
14.1. UN number	3082				
14.2. UN proper shipping name	Environmentally hazardous substance, liquid, n.o.s. (contains bisphenol A/ diglycidyl ether resin, liquid)				
	ICAO/IATA Class	9			
14.3. Transport hazard class(es)	ICAO / IATA Subsidiary Hazard	Not Applicable			
0.000(00)	ERG Code	9L			
14.4. Packing group	Ш	III			
14.5. Environmental hazard	Environmentally hazardous				
14.6. Special precautions for user	Special provisions		A97 A158 A197 A215		
	Cargo Only Packing Instructions		964		
	Cargo Only Maximum Qty / Pack 450		450 L		
	Passenger and Cargo Packing In	Passenger and Cargo Packing Instructions 964			

Chemwatch: 5689-04 Page 13 of 14

Version No: 2.1 PROBOND 1100PS

PROBOND 1100PS (Part A)

Issue Date: **02/07/2024**Print Date: **20/01/2025**

Passenger and Cargo Maximum Qty / Pack	450 L
Passenger and Cargo Limited Quantity Packing Instructions	Y964
Passenger and Cargo Limited Maximum Qty / Pack	30 kg G

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3082			
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (contains bisphenol A/ diglycidyl ether resin, liquid)			
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subsidiary Hazard Not Applicable			
14.4. Packing group	III			
14.5 Environmental hazard	Marine Pollutant			
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	F-A, S-F 274 335 969 5 L		

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
bisphenol A/ diglycidyl ether resin, liquid	Not Available
portland cement	Not Available
silica amorphous, fumed, crystalline free	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Product name	Ship Type
bisphenol A/ diglycidyl ether resin, liquid	Not Available
portland cement	Not Available
silica amorphous, fumed, crystalline free	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

bisphenol A/ diglycidyl ether resin, liquid is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

Australian Inventory of Industrial Chemicals (AIIC)

Chemical Footprint Project - Chemicals of High Concern List

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

portland cement is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

silica amorphous, fumed, crystalline free is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Additional Regulatory Information

Not Applicable

National Inventory Status

National Inventory Status				
National Inventory	Status			
Australia - AIIC / Australia Non- Industrial Use	es			
Canada - DSL				
Canada - NDSL	lo (bisphenol A/ diglycidyl ether resin, liquid; portland cement; silica amorphous, fumed, crystalline free)			
China - IECSC	Yes			
Europe - EINEC / ELINCS / NLP	No (silica amorphous, fumed, crystalline free)			
Japan - ENCS	No (portland cement; silica amorphous, fumed, crystalline free)			
Korea - KECI	Yes			

Page 14 of 14

PROBOND 1100PS (Part A)

Issue Date: **02/07/2024**Print Date: **20/01/2025**

National Inventory	Status			
New Zealand - NZIoC	Yes			
Philippines - PICCS	No (portland cement)			
USA - TSCA	SCA Inventory 'Active' substance(s) (bisphenol A/ diglycidyl ether resin, liquid; portland cement); No (silica amorphous, fumed, crystalline ee)			
Taiwan - TCSI	Yes			
Mexico - INSQ	Yes			
Vietnam - NCI	Yes			
Russia - FBEPH	Yes			
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.			

SECTION 16 Other information

Revision Date	02/07/2024
Initial Date	02/07/2024

SDS Version Summary

Version No: 2.1

Version	Date of Update	Sections Updated
2.1	02/07/2024	Toxicological information - Acute Health (inhaled), Toxicological information - Acute Health (skin), Toxicological information - Acute Health (swallowed), First Aid measures - Advice to Doctor, Physical and chemical properties - Appearance, Toxicological information - Chronic Health, Ecological Information - Environmental, Exposure controls / personal protection - Exposure Standard, Firefighting measures - Fire Fighter (fire/explosion hazard), Firefighting measures - Fire Fighter (fire fighting), Handling and storage - Storage (storage incompatibility), Handling and storage - Storage (suitable container), Toxicological information - Toxicity and Irritation (Other), Identification of the substance / mixture and of the company / undertaking - Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- ▶ PC TWA: Permissible Concentration-Time Weighted Average
- ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit
- ▶ IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- ▶ STEL: Short Term Exposure Limit
- ► TEEL: Temporary Emergency Exposure Limit
- ▶ IDLH: Immediately Dangerous to Life or Health Concentrations
- ▶ ES: Exposure Standard
- OSF: Odour Safety Factor
- ▶ NOAEL: No Observed Adverse Effect Level
- ▶ LOAEL: Lowest Observed Adverse Effect Level
- ► TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- ▶ BCF: BioConcentration Factors
- BEI: Biological Exposure Index
- ▶ DNEL: Derived No-Effect Level
- ▶ PNEC: Predicted no-effect concentration
- ► MARPOL: International Convention for the Prevention of Pollution from Ships
- ▶ IMSBC: International Maritime Solid Bulk Cargoes Code
- ▶ IGC: International Gas Carrier Code
- ▶ IBC: International Bulk Chemical Code
- ▶ AllC: Australian Inventory of Industrial Chemicals
- ▶ DSL: Domestic Substances List
- ► NDSL: Non-Domestic Substances List
- ▶ IECSC: Inventory of Existing Chemical Substance in China
- EINECS: European Inventory of Existing Commercial chemical Substances
- ▶ ELINCS: European List of Notified Chemical Substances
- ► NLP: No-Longer Polymers
- ▶ ENCS: Existing and New Chemical Substances Inventory
- ► KECI: Korea Existing Chemicals Inventory
- ▶ NZIoC: New Zealand Inventory of Chemicals
- ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances
- ► TSCA: Toxic Substances Control Act
- ► TCSI: Taiwan Chemical Substance Inventory
- ▶ INSQ: Inventario Nacional de Sustancias Químicas
- ▶ NCI: National Chemical Inventory
- ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.